

LASER OPTICS COMPONENTS

30 Years of Beam Shaping Excellence

Focuslight -- One-stop-shop provider of micro-optics best matching your needs

With over 30 years of expertise in optical design, simulation, and volume production, Focuslight employs advanced, innovative technologies to deliver diverse beam-shaping solutions. Our high-precision micro-optics, manufactured with five major process technologies, enable a wide range of applications with exceptional performance and quality, making us your reliable, long-term partner for optical components and modules.

High LIDT Optical Coating: Anti-reflection, high-reflection, beam splitter, band filter, and various customization (UV, VIS, IR)

Beam Shaping - The Right Photon at the Right Place and Time!

Single Lenses

Fast Axis Collimators (FAC)

Specifications	Value
Material	High quality optical glass, fused silica
Effective Focal Length	0.11 – 7.7 mm, customizable
Back Focal Length	0.034 – 5.000 mm, customizable
AR Coating	770 – 1070 nm, 790 – 990 nm, 400 – 480 nm

Front view of fast axis collimation: Before and After

Fiber Couplers and Collimators

Specifications	Value
Material	Fused silica, silicon
Beam Diameter / Output	50 to 400 µm, or customizable
Fiber / Waveguide types	SMF, MMF, LD, PIC, Si-Photonics
Lens Type	Circular, cylindrical
Lens Profile	Spherical, aspherical, DOEs
AR Coating	VIS, NIR

Focusing Lens / FAC-SAC Monolitic Collimation Lens

Specifications	Value
Material	Moldable materials (e.g. D-ZK3 or D-LAK6)
Outer Diameter Range	1.5 – 45 ± 0.003 mm
Transmission Decenter	30" – 90"
PV	0.2 – 1.0 μm
Coating	VIS, NIR

Linear Lens Arrays

Fiber Coupler and Collimator Arrays

Specifications	Value
Material	Fused silica, silicon
Lens Dimension	Diameter 0.02 – 1.5 mm, center thickness 0.25 – 3.0 mm, aspherical lens units
Pitch	127 / 250 / 500 / 750 µm and customized, 1D / 2D arrays
Coating	Low loss ARC and metallization

Slow Axis Collimator Arrays

Specifications	Value
Material	Optical glass, fused silica
Pitch	0.4 / 0.5 / 1.0 mm
Structure	Single sided (SAC arrays) or double sided (Telescope arrays)
AR Coating	VIS, NIR

Beam Transformation System (BTS)

Specifications	Value
Material	Optical glass, fused silica
Effective Focal Length	0.11 – 7.7 mm, customizable
Back Focal Length	0.034 / 0.052 / 0.090 mm
Pitch	0.2 / 0.225 / 0.4 / 0.5 mm, customizable
AR Coating	420 - 465, 790 - 990, 600 - 700, 1000 - 1600 nm

Fiber coupling of laser bars with BTS

FOCUSLIGHT Never stop exploring

Area Lens Arrays

Homogenizers

Specifications	Value
Material	High refractive index optical glass, fused silica, silicon, CaF2, polymer on glass (PoG)
Lens Type	Cylindrical, circular, hexagonal, square
Lens Arrangement	Linear, quad, hexagonal and customizable
Coating	AR, HR, chrome, black chrome

A factor A f

Typical homogeneity > 95% used in pan-semi applications

Diffusers

Specifications	Value
Material	Optical glass
FOV	Up to 160° in one direction
Working Temperature	-40 °C – 150 °C
Intensity Distribution	Top-hat, cos-2, bat-wing (> 90% homogeneity)
Suitable Laser Source	EEL, VCSEL, DPSSL, Fiber laser etc.

Typical bat-wing distribution with FOV 160° x 120° used in flash LiDAR

Shack-Hartmann Arrays

Specifications	Value
Material	Fused silica, silicon
Lens Diameter	30 µm to 2.0 mm
F-number (F#)	Typ. F/5 to F/100
Effective Focal Length	Typ. 1 to 100 mm
Wavefront Error (Surface profile deviation)	10 to 50 nm (Typical)
Array Size	Customizable
AR Coating	UV, VIS, NIR

Wavefront sensing with Shack-Hartmann arrays

Pinhole Arrays

Specifications	Value
Disc Diameter	≤ 160 mm
Material	Fused silica
Pinhole/Lens Pattern	Custom
AR Coating	UV, VIS, NIR
Cr Coating	Customizable per request

Arrays of precision pinholes essential to specific applications (e.g., confocal microscope)

0

Microlens Array Discs

Specifications	Value
Disc Diameter	80-120 mm typically, up to 160 mm
Material	Fused silica
Lens surface	Custom
Lens pattern	Spiral
Single aperture	500-700 µm

Micro Lens Arrays

•		
Value		
Polymer on glass (PoG)		
Convex, concave, arbitrary (freeform), with or without apertures		
10 µm to 2 mm		
2 to 450 µm		
≤ 5 µm lens to lens, lens to aperture (same side / opposite sides)		

Array of microlenses arranged in a certain pattern to improve the efficiency of light delivery in confocal microscopes.

Pattern generation with MLAs with apertures

Diffractive Optical Elements (DOE)

Fiber coupling through "very flat" DOE

Beam shaping DOE for UV excimer laser

Plano Optics

Micro Prisms

Specifications	Value
Lens Size	2 – 0.3 mm
Angular Accuracy	30"
Flatness	1/10λ @ φ 50 mm
Roughness	0.2 – 0.6 nm
Surface Quality	MIL 20/10 / ISO 3x0.1, L0.02

Windows

WIIIG0W3		
Specifications	Value	
Size	2 x 2 mm – 1200 x 300 mm	
Flatness	1/10λ @ φ 150 mm	
Roughness	0.2 – 0.6 nm	
Surface Quality	MIL 20/10 / ISO 3x0.1, L0.02	

Precision Coating + Advanced Characterization

Focuslight offers advanced optical coating services, providing high-quality coatings across a broad wavelength range from deep ultraviolet (DUV) to infrared (IR). With precise design and ISO-compliant production, we ensure exceptional performance and long-term reliability of the coatings used in various industries, such as optical communications, medical and health, and automotive-grade applications.

Wide Coating Range from UV 248 nm to IR 3000 nm

- Anti-reflection
- Bandpass
- Polarizer
- High reflection
- Splitter

Anti-reflection coating on lens arrays

High reflection coating on micro prisms

Advanced Coating Characterization

- Nano coating defect diagnosis
- Coating layer stress analysis
- Coating layer absorption and LIDT analysis

LIDT Measurement Capability and Service *

Specifications	Value
Wavelength	355 / 532 /1064 nm
Laser Mode	Pulsed
Frequency	10 Hz
Pulse Width	10 ns
Pulse Number	200

* Test report available within 3 days after sample reception

COMPANY INTRODUCTION

www.focuslight.com

Founded in 2007 and headquartered in Xi'an, China, Focuslight Technologies Inc. is a fast-growing public company (Shanghai: 688167) that specializes in developing and manufacturing high-power diode laser components and materials, laser optics, as well as photonics module and system solutions focusing on optical communication, automotive, pan-semiconductor, and medical and health applications. Focuslight has expanded its global footprint through strategic acquisitions including LIMO GmbH in 2017 and SUSS MicroOptics SA in 2024 (now as Focuslight Switzerland SA). With the acquisition of assets from ams OSRAM in 2024, Focuslight extends its business to be a global photonics foundry by providing global photonics industry process development and manufacturing service under the brand of Heptagon. Learn more at www.focuslight.com and www.hptg.com.

Focuslight Technologies Inc.